
6146 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

Fast Temporal Logic Mission Planning of Multiple
Robots: A Planning Decision Tree Approach

Ziyang Chen , Zhangli Zhou , Graduate Student Member, IEEE, Shaochen Wang , Jinsong Li ,
and Zhen Kan , Senior Member, IEEE

Abstract—This letter develops a fast mission planning frame-
work named planning decision tree (PDT), that can handle large-
scale multi-robot systems with temporal logic specifications in real
time. Specifically, PDT builds a tree incrementally to represent the
task progress. The system states are modeled by both completion
positions and times, which avoids sophisticated product automaton
and significantly reduces the search space. By growing the tree
from the root node to leaf nodes, PDT can be searched for mis-
sion plannings that satisfy the linear temporal logic (LTL) task.
Rigorous analysis shows that the PDT based planning is feasible
(i.e., the generated plan is applicable and satisfactory with respect
to the LTL task) and complete (i.e, a feasible solution, if exits, is
guaranteed to be found). We further show that PDT based planning
is efficient, i.e., the solution time of finding a satisfactory plan is only
linearly proportional to the robot numbers. Extensive simulation
and experiment results demonstrate its efficiency and effectiveness.

Index Terms—Linear temporal logic, mission planning, planning
decision tree.

I. INTRODUCTION

L INEAR temporal logic (LTL), as a formal language, is
being widely used to describe complex robotic tasks [1],

[2], [3]. Although multi-robot systems with LTL specifications
have shown great potentials, there is one main challenge - the
timely planning - that limits their deployment in real-world
applications. For instance, consider a search and rescue scenario
after a natural disaster. It often requires a large group of robots
(e.g., UAVs) to collaboratively search for the survivors and
the mission should be planned fast to enable real time imple-
mentations. However, existing temporal logic mission planning
approaches either cannot scale well for multi-robot or suffer
from large computational cost limiting its applicability in real
time. Hence, this work is particularly motivated to develop a fast
mission planning framework that can handle a large multi-robot
system.

The approaches to mission planning problems with LTL
specifications can be centralized or distributed. In centralized
approaches, automaton-based methods [4], [5], [6], [7] construct

Manuscript received 5 January 2024; accepted 7 May 2024. Date of pub-
lication 15 May 2024; date of current version 22 May 2024. This letter was
recommended for publication by Associate Editor E. Pastore and Editor C. Yan
upon evaluation of the reviewers’ comments. This work was supported by the
National Natural Science Foundation of China under Grant U2013601 and Grant
62173314. (Corresponding author: Zhen Kan.)

The authors are with the Department of Automation, University of Science
and Technology of China, Hefei 230026, China (e-mail: zkan@ustc.edu.cn).

Digital Object Identifier 10.1109/LRA.2024.3401166

a product automaton based on the transition systems and the
Büchi automaton generated by the LTL formula. Graph-search
techniques are then applied over the product automaton to
search for satisfactory plans. However, automaton-based ap-
proaches generally cannot deal with large-scale multi-robot
systems, since the size of the product automaton grows sub-
stantially with the number of robots. Besides the group size,
the workspace complexity also contributes significantly to the
huge search space, limiting the efficiency of mission planning.
Previous works heavily rely on the abstract discrete maps and the
product automaton for mission planning, resulting in not only
poor scalability but also poor real-time performance [8]. The
method MT* in [9] constructs a reduced version of the product
graph without computing the complete joint transition system.
However, they still suffer from dimensional explosion with the
increase of the number of robots. Recently, sampling-based
algorithms [10], [11] have been developed, which can be applied
in continuous maps. The solution can be obtained relatively
faster than conventional approaches, and can be extended for
reactive planning [12]. However, such methods are only proba-
bilistically completed. Besides, due to the existence of a large
number of useless samples, long exploration time is often
needed.

Another mainstream centralized solutions are optimization-
based methods. For instance, by formulating the mission plan-
ning problem as a mixed integer linear programming (MILP)
problem, optimization-based methods have been investigated
for metric interval temporal logic (MITL) mission planning [13],
signal temporal logic (STL) mission planning [14], LTL mission
planning [15], homogeneous multi-robot systems [16], and het-
erogeneous multi-robot systems [17]. However, MILP suffers
from the high computational cost, limiting its applications in
real time.

Different from centralized approaches, distributed mission
planning of multi-robot systems has also been investigated. The
ideas behind distributed planning can be classified as either task
decomposition-based [18], [19], [20] or task coupling-based
methods [21], [22], [23]. By task decomposition each robot
can be planned independently, while the task coupling methods
directly construct local formulas to enable global mission objec-
tives. Distributed methods have good scalability and are suitable
for real-time planning. However, the above decomposition and
coupling methods have to be carefully designed case by case and
need to additionally satisfy a number of restrictive hypothesis to
ensure the validity and avoid deadlocks.

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6540-8451
https://orcid.org/0000-0002-4995-4732
https://orcid.org/0000-0002-6985-240X
https://orcid.org/0000-0001-8680-6045
https://orcid.org/0000-0003-2069-9544
mailto:zkan@ustc.edu.cn

CHEN et al.: FAST TEMPORAL LOGIC MISSION PLANNING OF MULTIPLE ROBOTS: A PLANNING DECISION TREE APPROACH 6147

In this letter, we develop a fast mission planning framework
named planning decision tree (PDT) that can handle large-scale
multi-robot systems in real time. Specifically, by considering the
LTL task specifications and environment, the PDT builds a tree
incrementally to represent the task progress and system states.
The PDT based mission planning framework has the following
advantages. First, it is applicable to large-scale multi-robot
systems. To avoid the use of product automaton, the system
states are modeled by both the completion position and time of
each agent, which greatly reduce the search space of the multi-
agent system. Such a design can deal with mission planning
with multiple orders of magnitude more robots than those that
existing methods can manipulate. As shown in simulation, the
PDT based framework can deal with 104 robots and beyond.
Second, it can achieve fast planning in real time. Leveraging the
tree structure, the developed PDT encodes the task and system
states in a hierarchical tree, which is built incrementally during
mission operation and system states iteration. Therefore, PDT
based planning framework shows significant savings in terms
of not only memory used to save the runtime data, but also
the computational cost. The pruning in PDT can further reduce
the complexity. Although only the locally optimal plan can be
obtained with pruning, rigorous analysis shows that the PDT
based planning is feasible (i.e., the generated plan is applicable
and satisfactory with respect to the LTL task) and complete (i.e, a
feasible solution, if exits, is guaranteed to be found). We further
show that PDT based planning is efficient, i.e., the solution
time of finding a satisfactory plan is only linearly proportional
to the robot numbers. Extensive simulation and experiment
results demonstrate the effectiveness of the proposed planning
framework.

Notations: let Z≥0, N, R+, and [N] denote the set of non-
negative integers, the set of natural numbers, the set of positive
real numbers, and the shorthand notation for{1, . . . , N}, respec-
tively. Given a set A, denote by |A| and 2A the cardinality and
power set of A, respectively. Given a sequence σ = σ0σ1 . . .,
denote by σ[j . . .] = σjσj+1 . . . and σ[. . . j] = σ0 . . . σj . Let
A \B be the set difference.

II. PRELIMINARIES

An LTL formula is built on a set of atomic propositions, stan-
dard Boolean operators such as ∧ (conjunction), ¬ (negation),
and temporal operators such as X (next), and U (until). Given a
set of atomic propositions AP , the syntax of an LTL formula φ
is defined as

φ := ap | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2, (1)

where ap ∈ AP represents the atomic proposition that can be
either true or false. Xφ means φ is true at the next moment, and
φ1Uφ2 means φ1 is true until φ2 becomes true. Other proposi-
tional logic operators such as ∨ (disjunction), → (implication),
and temporal operators such as G (always) and F (eventually)
can also be defined [24].

The semantics of an LTL formula are defined over an infinite
sequence σ = σ0σ1 . . . with σi ∈ 2AP , i ∈ Z≥0, where 2AP

represents the power set of AP . Denote by σ |= φ if the word σ

satisfies the LTL formula φ. An LTL formula can be translated
to a nondeterministic Büchi automaton (NBA).

Definition 1: An NBA is a tupleB = (S, S0,Δ,Σ,F), where
S is a finite set of states; S0 ⊆ S is the set of initial states;
Σ = 2AP is the input alphabet;Δ : S × S → 2Σ is the transition
function; and F ⊆ S is the set of accepting states.

Given a sequence of input σ = σ0σ1σ2 . . . over Σ, a run of
B generated by σ is an infinite sequence s = s0s1s2 · · · where
s0 ∈ S0 and σi+1 ∈ Δ(si, si+1), i ∈ Z≥0. If the input σ can
generate at least one run s that intersects the accepting states
F infinitely many times, B is said to accept σ. For any LTL
formulaφ overΠ, one can construct an NBA with input alphabet
Σ accepting all and only words that satisfy φ. To convert an LTL
formula to an NBA, readers are referred to [25] for algorithms
and implementations.

III. PROBLEM FORMULATION

Consider a multi-robot system R = {r1, . . . , rna
}, where

na is the number of robots. The robots operate in a bounded
workspaceM , which contains nM ∈ N non-overlapped regions
of interest. Denote by Mi the ith region of interest and denote
by MNI the no-fly region (e.g., obstacles or the regions that the
robots can not traverse or operate within), where Mi ∩Mj = ∅
and Mi ∩MNI = ∅ with ∀i �= j and i, j ∈ [nM]. For each
position p ∈ M , the labeling function L : M → AP maps p to
the corresponding ap ∈ AP , i.e.,L(p) = ap. Let pi(t) ∈ M and
vi(t) ∈ R denote the position and velocity of ri at time t ∈ R,
respectively. Following the works of [11], [26], [27], the agents’
tasks are pre-assigned via LTL-based specifications.

Definition 2: The abstract task system (ATS) is defined as
a tuple T = (Q,AP,M,R,LA,LM,LR), where Q is a finite
set of abstract sub-tasks, M is the workspace, LA : Q → AP
is a labeling function that indicates the atomic proposition as-
sociated with the sub-task q ∈ Q, LM : Q → M is a labeling
function that maps q ∈ Q to a position p ∈ M , i.e. LM(q) = p,
and satisfies L(LM(q)) = LA(q), LR : Q → 2R is a labeling
function that maps q ∈ Q to the set of required robots R′ ⊆ R,
i.e., LR(q) = R′.

The ATST in Definition 2 is developed to abstract the mission
in M into a set of sub-tasks. That is, each q ∈ Q uniquely
corresponds to an atomic proposition LA(q), which is executed
atLM(q) in the workspace and the robots inLR(q) get involved
in performing the sub-task q.

Example 1: To illustrate the construction of ATS, consider a
group of 3 robots (e.g., crazyflie) operating in the environment
as shown in Fig. 1 . Suppose the mission first requires robot
r1 to visit the red region and robots r2 and r3 to visit the blue
region. Then, robot r3 needs to visit the green region and robots
r1 and r2 need to visit the yellow region. Finally, all robots
return to white region. Such a mission can be represented as φ =
φ1 ∧ φ2 ∧ φ3, where φ1 = ((¬ap2 ∧ ¬ap4)Uap3) ∧ ((¬ap2 ∧
¬ap4)Uap1), φ2 = ((¬ap5)Uap2) ∧ ((¬ap5)Uap4), and φ3 =
Fap5. Since there are five areas of interest, we define Q =
{q1, q2, q3, q4, q5}, where LA(qi) = api, i ∈ [5], LR(q1) =
{r1},LR(q2) = {r2, r3},LR(q3) = {r1, r2},LR(q4) = {r3},

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

6148 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

Fig. 1. The environment contains 3 robots ri, i ∈ [3], and 5 areas of interest
labeled as sub-tasks qi, i ∈ [5].

LR(q5) = {r1, r2, r3}. The mappings LM(qi), i ∈ [5], are
shown in Fig. 1.

Given the workspace M and the NBA Bφ generated by the
LTL formula φ, the plan is defined as Π = (q, s,π), where
q = q0q1q2 . . . is the sequence of sub-tasks in T with qi ∈ Q,
π = π0π1π2 . . . is the sequence of atomic proposition with
πi = LA(qi) ∈ AP , and s = s0s1s2 . . . is the sequence of
NBA states, where si is the NBA state after completing at
πi. By denoting Πi = (qi, si, πi), i ∈ Z≥0 as a plan tuple, we
can rewrite Π = Π0Π1Π2, The plan Π = (q, s,π) is said
to satisfy the formula φ, denoted as Π |= φ, if π |= φ with
LA(qi) = πi and πi ∈ Δ(si−1, si), ∀i ∈ Z>0. In this work, the
plan Π is called feasible and satisfactory for φ if Π |= φ. Based
on the prefix-suffix structure [11], the plan Π can be written
in the form of Π = ΠpreΠsufΠsuf Πpre is the prefix part
starting from an initial state and ending at an accepting. Πsuf

is the suffix part with the same starting and ending NBA state,
which can be applied to construct a infinite word intersecting
the accepting states F infinitely many times. Therefore, we
only need to determine Πpre and Πsuf , which can construct
an infinite plan Π = ΠpreΠsufΠsuf . . . |= φ. Let Πfinite =
ΠpreΠsuf denoted a finite plan and the cost of Πfinite, denoted
as C(q) with q ∈ Πfinite, is defined as the total operation time
in completing the sub-tasks q. Specifically, the cost of q up to
the index j is defined as

C (q [. . . j]) = max {C (q [. . . j − 1]) , tj} (2)

where tj indicates the completion time for sub-task qj , which
satisfies ∀ri ∈ LR(qj), pi = LM(qj). Based on the defined
cost, the problem is formulated as follows.

Problem 1: Given the map M , an LTL formula φ, and the
multi-robot system R, the goal is to develop a task-level plan
Πfinite = ΠpreΠsuf that satisfies φ while minimizing the cost
C(q), q ∈ Πfinite.

IV. MISSION PLANNING

Since the tree-based methods such as map sampling [12]
or automaton sampling [11] need to incrementally construct a
dense transition system, they are limited in practice in the sense
that the search space can grow substantially with the increase
of agent numbers and the workspace size. To address this issue,
a planning decision tree based mission planning framework is
developed in this work, as shown in Fig. 2. The PDT encodes

Fig. 2. The mission planning framework. The node consists of mission-related
and system-related attributes. Each node searches child nodes based on sub-tasks
and obtains the system states by iterations. After pruning by function Bound,
child nodes are added into the tree. The robot will perform the task according
to the obtained plan and adapt the path to the real environment.

the automaton states generated by the LTL task φ and the system
states in a hierarchical tree structure. By growing the tree from
the root node to leaf nodes, PDT can be searched for plan Π
that satisfies the LTL task φ. It is worth pointing out that the
PDT based approach in this work only searches q ∈ Q, which
is only related to the areas of interest. Therefore, the map size
has limited influence on the algorithm complexity. In addition,
the planning relies on the predicted time and positions of each
robot, which can be obtained independently without searching
the product automaton. Therefore, the algorithm complexity
only increases linearly with the number of robots, which can
be used for large-scale robots in real time.

A. Planning Decision Tree (PDT)

As the basis of the developed mission planning framework,
the PDT is defined as follows.

Definition 3: The planning decision tree TD is constructed
based on a set of nodes {di}, i ∈ Z≥0, where d0 represents the
root. Each node in TD is defined as a tuple

di =
(
sTi , q

T
i , π

T
i , ETi, EPi

)
where
� sTi ∈ S denotes the automaton state of node i;
� qTi ∈ Q denotes the sub-task of node i;
� πT

i ∈ AP denotes the atomic proposition that satisfies
πT
i = LA(qTi);

� ETi = {tpre1 , tpre2 , . . . , tprena
} denotes the predicted task

completion time where tprej , also denoted as ETi(j), is
the predicted time that rj completes its previous sub-tasks
from d0 to di;

� EPi = {ppre1 , ppre2 , . . . , pprena
} denotes the predicted robot

locations for the previous task, where pprej ∈ M , also de-
noted as EPi(j), is the predicted location of ri to complete
its previous sub-tasks from d0 to di.

To avoid notational confusion, the superscript T in sTi , qTi ,
and πT

i indicates the states in TD. The parent node of di is
denoted as Ori(di), i.e., the predecessor. Let Nodes(di) denote a
sequence of nodes from the root d0 to di in TD, i.e.,Nodes(di) =
di0di1 . . . din is a sequence of nodes satisfying di0 = d0, din =

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FAST TEMPORAL LOGIC MISSION PLANNING OF MULTIPLE ROBOTS: A PLANNING DECISION TREE APPROACH 6149

Algorithm 1: Planning Decision Tree.

di, and, ∀j ∈ [n], dij−1
= Ori(dij). The function Plan maps the

node sequence to a plan, i.e., Plan(Nodes(di)) = Π0Π1 . . .Πn,
where Πj = (qTij , s

T
ij
, πT

ij
), j ∈ [n], is a plan tuple of node

dij ∈ TD. Due to the prefix and suffix stages of the plan, the
function Prog(di) ∈ {pre, oth} ∪ F is developed to record the
task stage of the plan tuple (qTi , s

T
i , π

T
i). Specially, Prog(di) =

pre indicates the plan is in the prefix stage, Prog(di) = s
indicates the plan is in the suffix stage with starting state s, and
Prog(di) = oth indicates the completion of first suffix stage.
Let PreS(di) denote the set of automaton states of the nodes
in the same task stage, i.e., sTj ∈ PreS(di) if dj ∈ Nodes(di)
and Prog(di) = Prog(dj), which can be used to avoid repeated
exploration. To address Problem 1, we further define CT (di) �
max{ETi} to indicate the cost from d0 to di.

The PDT TD can be constructed by expanding from the root
node and taking into account the LTL specifications and the
iterations of system states. A satisfactory plan is then gener-
ated by tracing back from the leaf node with the least cost to
the root node. The general idea is outlined in Algorithm 1.
Given the NBA Bφ, the workspace M , and the ATS T , the
tree is initialized by the root node d0. Specifically, its mission
states are set as sT0 = s0 ⊆ S0, qT0 = q0, πT

0 = π0 = ∅, and
Prog(d0) = pre. To avoid unnecessary expansion of the tree,
Tra(di) ∈ {0, 1} is defined to indicate whether di can generate
its child nodes and Tra(d0) = 0 by default. The EP0 and ET0

are set according to the initial system states. In lines 4–13, if there
exists a node di satisfying Tra(di) = 0, the tree is expanded by
adding new child nodes in the set disub generated by the function
Generation, where the function Bound is incorporated to reduce
the tree size by identifying the nodes that do not contribute to
the mission planning. After all child nodes are added to the
tree, the traversal flag is set to Tra(di) = 1, which indicates
that it has been traversed and will not generate child nodes
any more. The tree stops expanding until all nodes have been
traversed. Finally, the node completing the first suffix stage with
the minimum cost, denoted as dmin, is selected. The plan can
then be obtained by Π = Plan(Nodes(dmin)) and divided into
ΠpreΠsuf by Prog(di) for each di ∈ Nodes(dmin).

B. Tree Expansion

The tree TD expands by generating feasible child nodes. Each
child node contains the mission states, the system states. The
mission states indicate the mission progress, which guides the
execution of sub-tasks. The system states are updated based on
the mission states and previous system states, which can greatly
reduce the search space. The evaluation states are updated based
on the system states to reduce the tree expansion.

Given a parent node di, the function Generation in Algo-
rithm 2 is developed to generate its set of child nodes disub.
Specifically, after initialization (line 1), we first identify all
feasible automaton states s and the next sub-tasks q that satisfy
s ∈ S \ PreS(di) and LA(q) ∈ Δ(sTi , s) (lines 2–3). By the
selected state s and sub-task q, the child node dsub is created and
initialized as qTsub = q, sTsub = s, πT

sub = LA(q), Ori(dsub) =
di, and Tra(dsub) = 0. The predicted completion system states,
i.e., EPsub(j) and ETsub(j) of robot rj , are updated based on
the involved robots LR(q) and the location of current sub-task
LM(q). Specifically, for each robot rj ∈ LR(q), we set the
predicted location as EPsub(j) = LM(q) and the predicted
arrival time as ETarr(j) = ETi(j) +

1
vj
Length(P), where P

is the path from EPi(j) to LM(q) which can be obtained by ex-
isting path planners (e.g., PRM, RRT, RRT*) and 1

vj
Length(P)

indicates the predicted arrival time for the current sub-task q.
For other robots rj /∈ LR(q), EPsub(j) and ETarr(j) are set
the same asEPi(j) andETi(j) of their parent node di. Since the
current sub-task requires the arrival of all involved robots after
completing their previous sub-tasks, the predicted completion
time for the agent rj ∈ LR(q) is designed as (3). As there exists
CT (di) ≤ maxrk∈R{ETarr(k)}, (3) can be simplified as (4).

ETsub(j) = max

{
max

rk∈LR(q)
{ETarr(k)}, CT (di)

}
(3)

ETsub(j) = max
rk∈R

{ETarr(k)} (4)

The cost is set as CT (dsub) = maxj∈[na]{ETsub(j)}, which
indicates the total completion time for all sub-tasks from d0
to dsub. The task stage Prog(dsub) indicates the current stage of
the task and evolves according to

Flag(Prog, s) =

⎧⎪⎨
⎪⎩
Prog, if s /∈ F ,

s, if s ∈ F ,Prog = pre,

oth, if Prog = s.

(5)

Note that each NBA state can appear only once in one mission
stage by line 2, which can reduce the expansion of the parent
node di. To avoid the same NBA states appearing in one mis-
sion stage, the PreS(dsub) is updated based on Prog(dsub). If
Prog(dsub) changes, we set PreS(dsub) = ∅, and PreS(dsub) =
PreS(di) ∪ {sTsub} otherwise. Finally, dsub is added to the set of
child nodes disub.

In Algorithm 2, the system states are updated based on the
NBA state sTsub and the sub-task qTsub. Such a design can not only
enable the robot to select feasible actions that satisfy the LTL
mission, but also avoid the complex representation of system
states by directly obtaining the current robot state in the search.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

6150 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

Algorithm 2: Generation.

Thus, this method greatly reduces the search space caused by
the high precision of the map, the large number of robots, or the
dense time stamps, which makes traversal only related to tasks.

Remark 1: As the robots may not all be in the areas of interest,
a sparse map with only areas of interest can not fully express the
system states of the multi-robot system. Therefore, when using
product automaton based methods, a dense map is generally pre-
ferred over a sparse map. To address this issue, time automata are
developed in [28] and [29] to indicate the waiting time, which al-
lows the transition system with sparse states to be applied. Differ-
ently, the PDT based method in this work directly uses time and
position information to describe the system states, which avoids
the need of extensive exploration in each step as in the product
based methods [30] and sampling based methods [11]. There-
fore, our method can be used for a sparse map with only areas of
interest and the system states can be obtained directly without
search.

C. Tree Pruning

Since TD can grow substantially due to the traversal and the
iteration of system states, a pruning method is developed in this
section to limit the tree expansion. In particular, the function
Bound is designed, which can reduce the number of child nodes

Algorithm 3: Bound.

in TD. Different from the pruning method in [10], the proposed
pruning method is task-oriented, which limits the number of
nodes within (1 + |F |)× |S|.

As shown in Algorithm 3, for each child node, the first suffix
stage of the mission has been finished if Prog(dsub) = oth
(lines 2–3), and thus we can obtain a plan by dsub. Since this
dsub should not be traversed to generate new child nodes, we
set Tra(dsub) = 1. For the child node dsub, the node di ∈ TD
that has the same NBA state and the same task stage will be
selected (lines 4-10). If there exists CT (di) ≤ CT (dsub), we
set Tra(dsub) = 1. Otherwise, we set Tra(d̂i) = 1 for all leaf
nodes d̂i generated by di, which satisfying di ∈ Nodes(d̂i).
Later we will show that Bound can limit the number of state
while speeding up the tree expansion and ensuring the solution
time within the polynomial complexity.

To limit the tree expansion, the tree traversal rules are devel-
oped.

Definition 4: The traversal rules are defined as follows:
1) For any d in TD, if Prog(d) = oth, d will no longer be

traversed;
2) For any d in TD, the traversed states in PreS(d) will not

be sampled if the plan stage (i.e., plan prefix, plan suffix)
remains the same;

3) For any di and dj in TD, if ∃sTi = sTj , Prog(di) =
Prog(dj) and CT (di) < CT (dj), then the node dj will
no longer be traversed and the child nodes of dj will be
pruned off from TD.

The developed traversal rules in Definition 4 can effectively
control the horizontal and vertical expansion of TD. The idea
behind rule 1) is to limit the length of tree as we are interested in
completing the suffix loop fast. By rule 2), the depth of TD will
be smaller than |S| in each plan stage, which ensures the total
length of plan is not more than 2× |S|+ 1. For each plan stage,
only one node di ∈ TD, sTi = s, can generate its child nodes and
add them into TD, which means that after pruning, it holds that
|TD| < (1 + |F|)× |S|. In implementation, the rules 1) and 3)
are embodied in Algorithm 3 (lines 2–3 and lines 4–10) while
the rule 2) is embodied in Algorithm 2 (line 2).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FAST TEMPORAL LOGIC MISSION PLANNING OF MULTIPLE ROBOTS: A PLANNING DECISION TREE APPROACH 6151

V. ALGORITHM ANALYSIS

This section investigates the performance of PDT in the
following aspects: the feasibility, the completeness, and the
optimality. The feasibility indicates if the generated plan is
applicable and the algorithm completeness indicates whether
or not a feasible solution, if exits, is guaranteed to be found.

A. The Performance of PDT

We first show in Theorem 1-2 that the PDT, without using
the traversal rules, is guaranteed to find a satisfactory mission
plan. We then show in Lemma 1 - 4 that the traversal rules do
not compromise the feasibility and completeness of PDT, which
concludes in Theorem 3 that PDT with traversal rules can search
for the mission planning more efficiently.

Theorem 1 (The feasibility of PDT): Given a multi-robot
system R operating in the environment M with an LTL task φ,
if Algorithm 1 can find a plan ΠpreΠsuf without using traversal
rules, it is guaranteed that ΠpreΠsuf |= φ.

Proof: Given an LTL formula φ, the environment M , and the
multi-robot system R, the tree TD can be constructed following
Algorithm 1. For each node di with a parent node Ori(di) = dj ,
by line 3 in Algorithm 2, one has πT

i = LA(qTi) ∈ Δ(sTj , s
T
i).

By the Algorithm 3, if Prog(di) = oth, then the path of di has
entered the accepting set F at least two times with the same
accepting states. Therefore, the plan obtained by PDT can finish
the first suffix loop of the mission and thus satisfies the task φ.�

Theorem 2 (The completeness of PDT): Given a multi-robot
system R operating in the environment M with an LTL task
φ, if there exists a mission planning satisfying φ, the PDT in
Algorithm 1 is ensured to find it without traversal rules.

Proof: Consider a planΠfinite = ΠpreΠsuf that satisfies the
formula φ with the shortest execution time. The corresponding
sequence can be represented as Πfinite = (q, s,π), which sat-
isfies ∀πi ∈ π, πi ∈ Δ(si−1, si) and LA(qi) = πi. According
to definition, sT0 = s0 ∈ s, qT0 = q0 ∈ q, πT

0 = π0 ∈ π. Since
TD has traversed all states when generating the child nodes, there
exists a node di1 ∈ TD such that sTi1 = s1 ∈ s, qTi1 = q1 ∈ q, and
πT
i1

= π1 ∈ π. Then, in the following expansion, if there exists a
node dij ∈ TD with sTij = sj ∈ s, qTij = qj ∈ q, πT

ij
= πj ∈ π,

there must exist dTij+1
∈ TD, sTij+1

= sj+1 ∈ s, qTij+1
= qj+1 ∈

q, πT
ij+1

= πj+1 ∈ π. Therefore, for ∀(qj , sj , πj) ∈ (q, s,π),

there exists dTij ∈ TD that satisfies sTij = sj ∈ s, qTij = qj ∈ q,

πT
ij
= πj ∈ π, which indicates the completeness of PDT. �

Theorem 1-2 indicate that, without traversal rules, PDT is
complete and feasible. Therefore, as long as there exists feasible
plans for the mission φ, the constructed tree TD is ensured to
include such plans. Among these feasible plans, the optimal one
with the minimum cost can be found. Therefore, PDT without
traversal rules also has optimality. The following lemmas and
theorems will show that the traversal rules only reduce the
search space without compromising the feasibility and com-
pleteness of PDT. To facilitate the analysis, we use C(q) to
evaluate the performance of a task sequence q = q0q1 . . . qe. Let
CR(r, q) denote the shortest completion time for robot r ∈ R

corresponding to the task sequence q, which further indicates
C(q) = maxr∈R(CR(r, q)).

Lemma 1: Suppose there are two task sequences q =
q0 . . . qe, and q∗ = q0 . . . qt . . . qe, where q∗ is same with q but
differs in containing additional task qt in the middle. It holds
that C(q) ≤ C(q∗).

Proof: Consider two task sequences q1 = q0qe and
q2 = q0q1qe, with the same initial state before executing
the task. If LR(q1) ∩ LR(qe) = ∅, one has C(q2) =
max(C(q0qe), C(q0q1)), and C(q0q1) ≥ C(q1). If there exits a
robot r ∈ LR(q1) ∩ LR(qe), then CR(r, q2) ≥ CR(r, q1)
since the robot r performs both q1 and qe. For the
robot r ∈ LR(q1) \ LR(qe), CR(r, q2) ≥ CR(r, q1) since
robot r performs one more task q1 in q2. For the robot
r ∈ LR(qe) \ LR(q1), CR(r, q2) = CR(r, q1) since
robot r performs the same task sequence q0qe. Then
there exists C(q2) = maxr∈R(CR(r, q2)) ≥ C(q1) =
maxr∈R(CR(r, q1)). Hence, following similar analysis
above, given q = q0 . . . qe, and q∗ = q0 . . . qt . . . qe, it can
be concluded that C(q) ≤ C(q∗). �

Lemma 2: Suppose Πbest = (q, s,π) = ΠpreΠsuf is an op-
timal plan. The states in s ∈ Πpre are all different, i.e., si �=
sj , ∀si, sj ∈ s, i �= j, and the same holds for s ∈ Πsuf .

Proof: Consider an optimal plan Πbest = ΠpreΠsuf , whose
corresponding states sequence is s = s0s1 . . . sn and the propo-
sitions sequence is π = π0π1 . . . πn. If si = sj ∈ S, i < j, sat-
isfyingΔ(si, sj+1) �= ∅ andL(qj+1) ∈ Δ(si, sj+1), there must
exist a new state sequence snew = s0 . . . sisj+1 . . . sn and a
task sequence qnew = q0 . . . qiqj+1 . . . qn, which satisfies φ in
M . According to Lemma 1, one has C(q) ≥ C(qnew), which
indicates there exists a plan whose cost is smaller than Πbest,
leading to the contradiction to the optimality assumption. �

Lemma 3: Traversal rule 2) in Definition 4 does not affect the
optimality and completeness of PDT.

Proof: According to Theorem 2, without using the traversal
rules, the PDT can still obtain all feasible plans. Suppose dend is
the leaf node with the least cost in TD. Then P = di0di1 . . . din
is an optimal path in TD generated by P = Nodes(dend) and
the corresponding optimal plan is Π = Plan(P) = (q, s,π),
q = q0 . . . qn. If there exist two nodes dik , dij ∈ P , k < j, such
that sTik = sTij = sk ∈ s and Prog(dik) = Prog(dik), accord-
ing to Lemma 2 C(q∗) ≤ C(q) with q∗ = q0 . . . qkqj+1 . . . qn.
Therefore, P is not the optimal path in TD, which is against
the assumption. Hence, the traversal rule 2) does not affect the
optimality and completeness of PDT.

Lemma 4: Traversal rule 3) in Definition 4 does not affect the
completeness of PDT. �

Proof: According to Theorem 2, without using the traver-
sal rules, the PDT can still obtain all feasible plans. Sup-
pose there exist two nodes dk1

, dk2
∈ TD satisfying sTk1

= sTk2
,

Prog(dk1
) = Prog(dk2

), CT (dk1
) < CT (dk2

). Assume that
there exists a feasible plan P = di0di1 . . . din and dk2

= dij ,
i.e. P = Nodes(dk2

)dij+1
. . . din . Then, due to sTk1

= sTk2
and

Prog(dk1
) = Prog(dk2

), there exists a new node sequence
Pnew = Nodes(dk1

)dij+1
. . . din that satisfies the same task φ.

It indicates that if the best plan exists and is not in TD because

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

6152 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

TABLE I
SOLUTION TIME FOR DIFFERENT NUMBER OF STATES

of the traversal rules, then there must exist an approximate
sub-optimal path satisfying φ. Hence, the traversal rule 3) does
not affect the completeness of PDT. �

Theorem 3: PDT with traversal rules is feasible and complete.
Proof: Lemma 1-4 indicate that the traversal rules do not

compromise the completeness of PDT. They only affect the node
expansion of the tree, which do not compromise the selected
propositions and transition of NBA states. Hence, the traversal
rules do not affect the feasibility of PDT. Since PDT is feasible
and complete without using traversal rules by Theorem 1-2,
the PDT is also feasible and complete when incorporating the
traversal rules. In addition, PDT can obtain the sub-optimal plan
since traversal rule 2) does not compromise the optimality and
traversal rule 3) can reserve the sub-optimal plan. �

Since the search progress of PDT algorithm is only task-
related, only the system states of each robot in the function
Generation need to be updated. Therefore, for PDT algorithm,
the time complexity related to na is O(n). As discussed before,
after pruning, there are at most (1 + |F|)× |S| nodes in TD
and thus the space complexity related to |S| is O(n). As the
upper bound length of tree is 2× |S|+ 1, the traversal times
are smaller than 2× |S|+ 1. In each traversal, since at most
(1 + |F|)× |S| nodes can be traversed and at most |S| × |AP |
child nodes can be generated by one parent node, the time
complexity is at most O(n3).

VI. NUMERICAL AND PHYSICAL EXPERIMENT

Numerical simulations are carried out in this section to
evaluate the performance of PDT. Throughout this simulation,
LTL2STAR is used to convert the LTL formula to an NBA [25]
and Matlab 2019b is used for numerical simulations. The re-
ported simulation results are the average of at least 20 runs.

The performance of the PDT algorithm is evaluated in terms
of the computation time in finding a feasible plan for the multi-
robot system R operating in M with an LTL task specification
φ. The environment M consists of 8 areas of interest and several
robots. Theapi, i = 1, . . . , 8, represents the tasks of visiting area
i, respectively. The areas of interest and the initial positions of
robots are randomly deployed. A total of 20 random maps have
been constructed as the test environments.

We first consider a single-robot with LTL formulas of dif-
ferent size (i.e., various number of atomic propositions and
NBA states). The average solution time of 20 runs is listed in
Table I. Fig. 3(a) indicates that the solution time is approximately

Fig. 3. The plots (a) and (b) show the solution time under different number of
task states and robots, respectively.

TABLE II
SOLUTION TIME FOR DIFFERENT NUMBER OF ROBOTS

TABLE III
SOLUTION TIME FOR DIFFERENT ALGORITHMS

linearly proportional to |S|2, which is smaller than the upper
bound of time complexity O(n3).

We then fix the LTL formula φ = GFap1 ∧GFap2 ∧
GFap3 ∧GFap4 and vary the number of the robots in R. The
average results of 20 runs are listed in Table II. Fig. 3(b) indicates
that the robot numbers has little influence on the solution time
when na is small and gradually shows a linear relationship with
na whenna is large. The time complexity of PDT corresponding
to the number of robots na is O(n), which is consistent with the
algorithm analysis.

To show the superiority of the algorithm, the proposed PDT
is compared against existing methods. For various numbers of
NBA states and robots, the results using different algorithms
are listed in Table III. Sampling indicates the sampling-based
method in [11] and we employed exactly the same settings in
the simulation section of [11] in this work for the purpose of
comparison. The solution time for the first searched feasible plan
is listed. The MILP methods in the works of [31], [32] are also
compared with our approach in terms of the solution time and
the simulation results are listed in Table III. The search step is
set as 1 in a 10× 10 map for the sampling-based method, MILP,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FAST TEMPORAL LOGIC MISSION PLANNING OF MULTIPLE ROBOTS: A PLANNING DECISION TREE APPROACH 6153

Fig. 4. The experiment results. (a) UAV r1 arrives at region 1. UAV r2 and
r3 arrive at region 2. (b), UAV r1 and r2 arrive at region 3. UAV r3 arrives at
region 4. (c) All UAVs return to region 5.

and ours. It can be seen from Table III that the sampling-based
method and MILP can not scale well with large groups of robots
and shows large variance. In contrast, the PDT based method is
much faster and scales well for large-sized multi-robot systems.

Experiments are carried out for the case in Example 1. The
system runs Matlab 2019b on Ubuntu18.04 and the ROS version
is Melodic. PDT searches 18 nodes within 0.0056s and the
minimum cost value is 25.61. The obtained plans are both
π = ap1ap3ap2ap4ap5. The snapshots of the experiment are
shown in Fig. 4, which indicates φ is successfully completed by
the UAVs. The experiment video is provided.1

VII. CONCLUSION

For multi-robot systems with temporal logic specifications,
this letter develops a novel framework that can generate satis-
factory plans not only faster than most existing methods, but
also multiple orders of magnitude more robots than those that
existing methods can manipulate. Additional research will con-
sider extending the PDT based mission planning for uncertain
environments or heterogeneous multi-robot systems.

REFERENCES

[1] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robot., vol. 25, no. 6,
pp. 1370–1381, Dec. 2009.

[2] A. Jones, M. Schwager, and C. Belta, “Information-guided persistent
monitoring under temporal logic constraints,” in Proc. IEEE Amer. Control
Conf, 2015, pp. 1911–1916.

[3] Y. Kantaros and M. M. Zavlanos, “Distributed intermittent connectivity
control of mobile robot networks,” IEEE Trans. Autom. Control, vol. 62,
no. 7, pp. 3109–3121, Jul. 2017.

[4] M. Cai, S. Xiao, Z. Li, and Z. Kan, “Optimal probabilistic motion planning
with potential infeasible LTL constraints,” IEEE Trans. Autom. Control,
vol. 68, no. 1, pp. 301–316, Jan. 2023.

[5] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan, “Modular deep
reinforcement learning for continuous motion planning with temporal
logic,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7973–7980, Oct. 2021.

[6] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning for
surveillance with temporal-logic constraints,” Int. J. Robot. Res., vol. 30,
no. 14, pp. 1695–1708, 2011.

[7] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal multi-
robot path planning with temporal logic constraints,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Syst., 2011, pp. 3087–3092.

[8] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic LTL
motion planning with environment and motion uncertainties,” IEEE Trans.
Autom. Control, vol. 66, no. 5, pp. 2386–2392, May 2021.

[9] D. Gujarathi and I. Saha, “MT*: Multi-robot path planning for temporal
logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
2022, pp. 13692–13699.

1[Online]. Available: https://youtu.be/muzncQHui3w

[10] Y. Kantaros and M. M. Zavlanos, “STyLuS*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” Int. J.
Robot. Res., vol. 39, no. 7, pp. 812–836, 2020.

[11] X. Luo, Y. Kantaros, and M. M. Zavlanos, “An abstraction-free method for
multirobot temporal logic optimal control synthesis,” IEEE Trans. Robot.,
vol. 37, no. 5, pp. 1487–1507, Oct. 2021.

[12] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path planning
with temporal logic specifications,” Int. J. Robot. Res., vol. 39, no. 8,
pp. 1002–1028, 2020.

[13] A. Nikou, J. Tumova, and D. V. Dimarogonas, “Cooperative task planning
of multi-agent systems under timed temporal specifications,” in Proc. IEEE
Amer. Control Conf., 2016, pp. 7104–7109.

[14] Y. E. Sahin, R. Quirynen, and S. Di Cairano, “Autonomous vehicle
decision-making and monitoring based on signal temporal logic and
mixed-integer programming,” in Proc. IEEE Amer. Control Conf., 2020,
pp. 454–459.

[15] S. Tokuda, M. Yamakita, H. Oyama, and R. Takano, “Convex approxima-
tion for LTL-based planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.,
2021, pp. 9863–9869.

[16] Y. E. Sahin, P. Nilsson, and N. Ozay, “Synchronous and asynchronous
multi-agent coordination with cLTL constraints,” in Proc. IEEE Conf.
Decis. Control, 2017, pp. 335–342.

[17] A. T. Buyukkocak, D. Aksaray, and Y. Yazicioğlu, “Planning of het-
erogeneous multi-agent systems under signal temporal logic specifica-
tions with integral predicates,” IEEE Robot. Autom. Lett., vol. 6, no. 2,
pp. 1375–1382, Apr. 2021.

[18] M. Guo, J. Tumova, and D. V. Dimarogonas, “Communication-free
multi-agent control under local temporal tasks and relative-distance con-
straints,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3948–3962,
Dec. 2016.

[19] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal approach to
the deployment of distributed robotic teams,” IEEE Trans. Robot., vol. 28,
no. 1, pp. 158–171, Feb. 2012.

[20] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of
finite LTL specifications for efficient multi-agent planning,” in Proc. 13th
Int. Symp. Distrib. Auton. Robot. Syst., 2018, pp. 253–267.

[21] L. Lindemann, J. Nowak, L. Schönbächler, M. Guo, J. Tumova, and D.
V. Dimarogonas, “Coupled multi-robot systems under linear temporal
logic and signal temporal logic tasks,” IEEE Trans. Control Syst. Technol.,
vol. 29, no. 2, pp. 858–865, Mar. 2021.

[22] R. Peterson, A. T. Buyukkocak, D. Aksaray, and Y. Yazicioglu, “De-
centralized safe reactive planning under TWTL specifications,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot., 2020, pp. 6599–6604.

[23] G. F. Schuppe and J. Tumova, “Multi-agent strategy synthesis for LTL
specifications through assumption composition,” in Proc. IEEE Int. Conf.
Autom. Sci. Eng., 2020, pp. 533–540.

[24] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[25] P. Gastin and D. Oddoux, “Fast LTL to büchi automata translation,” in
Proc. Int. Conf. Comput. Aided Verification, 2001, pp. 53–65.

[26] Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal control syn-
thesis for multirobot systems under global temporal tasks,” IEEE Trans.
Autom. Control, vol. 64, no. 5, pp. 1916–1931, May, 2019.

[27] K. Leahy, A. Jones, and C. I. Vasile, “Fast decomposition of temporal logic
specifications for heterogeneous teams,” IEEE Robot. Autom. Lett, vol. 7,
no. 2, pp. 2297–2304, Apr. 2022.

[28] A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta, “Robust multi-robot
optimal path planning with temporal logic constraints,” in Proc. IEEE Int.
Conf. Robot. Automat., 2012, pp. 4693–4698.

[29] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and
robustness in multi-robot path planning with temporal logic constraints,”
Int. J. Robot. Res., vol. 32, no. 8, pp. 889–911, 2013.

[30] Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y.
Zhao, “Reactive task allocation and planning for quadrupedal and
wheeled robot teaming,” in Proc. IEEE Int. Conf. Autom. Sci. Eng.,
2022, pp. 2110–2117.

[31] X. Luo and M. M. Zavlanos, “Temporal logic task allocation in het-
erogeneous multirobot systems,” IEEE Trans. Robot., vol. 38, no. 6,
pp. 3602–3621, Dec. 2022.

[32] K. Leahy et al., “Scalable and robust algorithms for task-based coordina-
tion from high-level specifications (ScRATCHeS),” IEEE Trans. Robot,
vol. 38, no. 4, pp. 2516–2535, Aug. 2022.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 11,2024 at 00:33:37 UTC from IEEE Xplore. Restrictions apply.

https://youtu.be/muzncQHui3w

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

